Weighted Association Rule Mining for Video Semantic Detection

نویسندگان

  • Lin Lin
  • Mei-Ling Shyu
چکیده

Semantic knowledge detection of multimedia content has become a very popular research topic in recent years. The association rule mining (ARM) technique has been shown to be an efficient and accurate approach for content-based multimedia retrieval and semantic concept detection in many applications. To further improve the performance of traditional association rule mining technique, a video semantic concept detection framework whose classifier is built upon a new weighted association rule mining (WARM) algorithm is proposed in this article. Our proposed WARM algorithm is able to capture the different significance degrees of the items (feature-value pairs) in generating the association rules for video semantic concept detection. Our proposed WARM-based framework first applies multiple correspondence analysis (MCA) to project the features and classes into a new principle component space and discover the correlation between feature-value pairs and classes. Next, it considers both correlation and percentage information as the measurement to weight the feature-value pairs and to generate the association rules. Finally, it performs classification by using these weighted association rules. To evaluate our WARM-based framework, we compare its performance of video semantic concept detection with several well-known classifiers using the benchmark data available from the 2007 and 2008 TRECVID projects. The results demonstrate that our WARM-based framework achieves promising performance and performs significantly better than those classifiers in the comparison. DOI: 10.4018/978-1-4666-1791-9.ch002

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Video Association Rules Based on Weighted Temporal Concepts

Discovery of video association rules has been found useful in many applications to explore the video knowledge such as video indexing, summarization, classification and semantic event detection. The traditional classical association rule mining algorithms can not apply directly to the video database. It differs in two ways such as spatial and temporal properties of the video database and signif...

متن کامل

A Novel Method for Mining Video Association Rules Using Weighted Temporal Tree

With the ever-growing digital libraries and video databases, it is increasingly important to understand and mine the knowledge from video database automatically. Video association mining is a relatively new and emerging research trend used to discover and describe interesting patterns in video. The traditional classical association rule mining algorithms can not apply directly to the video. It ...

متن کامل

Rule-Based Semantic Concept Classification from Large-Scale Video Collections

The explosive growth and increasing complexity of the multimedia data have created a high demand of multimedia services and applications in various areas so that people can access and distribute the data easily. Unfortunately, traditional keyword-based information retrieval is no longer suitable. Instead, multimedia data mining and content-based multimedia information retrieval have become the ...

متن کامل

Association rule mining with a correlation-based interestingness measure for video semantic concept detection

Content-based multimedia retrieval and automatic semantic concept detection research areas have been motivated by the high demands of multimedia applications and services. Due to its high efficiency and good performance, association rule mining (ARM) has been adopted to discover the association patterns from the multimedia data and predict the target concept classes in various media types. As a...

متن کامل

Semantic Concept Mining Based on Hierarchical Event Detection for Soccer Video Indexing

In this paper, we present a novel automated indexing and semantic labeling for broadcast soccer video sequences. The proposed method automatically extracts silent events from the video and classifies each event sequence into a concept by sequential association mining. The paper makes three new contributions in multimodal sports video indexing and summarization. First, we propose a novel hierarc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJMDEM

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2010